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Abstract

We present an inverse model analysis to quantify the emissions of wildfires in Alaska and
Canada in the summer of 2004 using carbon monoxide (CO) data from the Measurements
of Pollution in the Troposphere (MOPITT) remote sensing instrument together with the
chemistry transport model MOZART (Model for Ozone and Related Chemical Tracers).
We use data assimilation outside the region of the fires to optimally constrain the CO
background level and the transport into that region. Inverse modeling is applied locally to
quantify the fire emissions. Our a posteriori estimate of the wildfire emissions gives a total
of 30+£5 Tg CO emitted during June-August 2004 which is of comparable order to the
anthropogenic emissions for the continental US. The simulated CO fields have been

evaluated by comparison with MOPITT and independent aircraft data.

1 Introduction

CO plays a central role in atmospheric chemistry by acting as a major sink for hydroxyl
radicals and through its role in the production of ozone. Significant uncertainties still
persist in regional estimates of CO emissions, leading to key uncertainties in the impact of
human and natural activities on the atmospheric distribution of CO. Two different

approaches are widely used to estimate the emissions of atmospheric trace gases: bottom-



up estimates (i.e. techniques applying emission factors to socioeconomic, energy, land use,
and environmental data) and top-down estimates using observational data (i.e. inverse
modeling approaches). Bayesian synthesis inversion techniques have been applied in
various studies of the CO budget (e.g. Bergamaschi et al., 2000, Arellano et al., 2004;
Pétron et al., 2004; Heald et al., 2004). All of these studies identify significant differences
between top-down and bottom-up emission estimates.

We present a top-down constraint on CO emissions from the wildfires in Alaska and
Canada in summer 2004. The fires that burned from mid-June until September were the
largest on record for Alaska. We apply a Bayesian inverse technique using MOPITT
observations of CO, daily a priori bottom-up emission estimates based on MODIS
(Moderate Resolution Imaging Spectroradiometer) fire counts, and the chemical transport
model MOZART. In the evaluation of the a posteriori emissions we use MOPITT CO data
and aircraft observations from the INTEX-NA (Intercontinental Chemical Transport

Experiment — North America) campaign.

2 Methodology

We apply an inverse technique to seek an optimal solution for trace gas emissions
consistent with both the observed atmospheric constraints and the a priori emissions
estimate. When solving for emissions within a selected region the emitted contribution to
the CO budget within the region needs to be differentiated from the contribution from
outside the region. In this study, we account for CO that is transported into the region of
the fires by assimilating MOPITT CO data into MOZART outside the impacted region.
This methodology provides constraints on the CO transported into the domain with high

spatial and temporal resolution and compared to optimizing emissions on a global basis it is



less affected by model transport errors. We assume that within the region of interest the
differences between MOPITT and modeled CO are predominantly due to local fire

emissions. It is these differences we use to optimally infer the fire emissions.

The methodology requires the following components: an a priori estimate of the fire
emissions, a forward model to relate the estimated CO emissions to the measurements, CO
measurements, an assimilation scheme, and an inverse modeling approach. Each

component is discussed below.

2.1 Model A Priori Emissions

The a priori fire emissions for Alaska and Canada as well as fire emissions for the rest of
North America are derived from MODIS fire counts (Giglio et al., 2003). The land cover
burned is assigned based on the Global Land Cover 2000 dataset (GLC2000) and the
MODIS Vegetation Continuous Fields product (DeFries et al., 2000). Emission factors
from literature have been assigned to the land cover biomass (e.g., Battye and Battye,
2002; Andreae and Merlet, 2001), and assumptions of fuel consumption are based on Ito
and Penner (2004). The fire emissions for North America are provided as daily mean
values.

The a priori biomass burning emissions over the Alaskan-Canadian region total 13 Tg CO
for June through August. As defined by the variation in the fire counts, the fire emissions
possess a strong temporal and spatial variability compared to other sources. Anthropogenic
CO emissions CO in the selected region are 1.5 Tg for June through August, and CO

biogenic sources (Miiller, 1992) is 5 Tg.



2.2 The forward model

The global chemistry transport model MOZART (Horowitz et al., 2003) is used as the
forward model. The simulation is driven by meteorological fields from the National
Centers for Environmental Prediction (NCEP) re-analysis with 6 hours resolution. The
spatial resolution of the model is ~ 2.8° x 2.8° with 28 levels in the vertical (17 levels
between the surface and 200 hPa). The chemical time step of the model is 20 minutes.

Modifications in the model from the version published in Horowitz et al. (2003) include,
amongst others, an online dry deposition scheme based on Wesley et al. (1989), the
interactive calculation of isoprene and soil NO, emissions, updates in the chemical scheme,
and fixed surface concentrations of methane constrained by CMDL observations. Further
information can be found on the MOZART webpage

(www.acd.ucar.edu/science/gctm/mozart).

2.3 MOPITT CO Data

MOPITT is a nadir IR correlation radiometer aboard the NASA Terra satellite. The Level 2
V3 MOPITT dataset consists of retrieved CO mixing ratios for 7 vertical levels in the
atmosphere (surface to 150 hPa). However, the number of independent pieces of
information in one profile is typically less than 2 (Deeter et al., 2004). The MOPITT
retrievals show strongest sensitivity in the middle troposphere (Deeter et al., 2003), where
the main transport of CO from the fires takes place, but they have low sensitivity to the
boundary layer. The latter implies that the MOPITT observations could underestimate
emissions by only accounting for emissions that reach the free troposphere.

We restrict our analysis to MOPITT CO retrievals with an a priori contribution of less than

50% to ensure that the measurements used are representative of observed CO rather than



MOPITT a priori information (Deeter et al., 2004). MOPITT validation for data after
August 2001 shows a small bias (< 1 ppb) at all altitudes with a standard deviation of ~20
ppb (Emmons et al., 2004). For information about the MOPITT measurement and

validation we refer to Deeter et al. (2003) and Emmons et al. (2004).

2.4 Data Assimilation

The data assimilation scheme for MOPITT CO is based on the 3D suboptimal Kalman
filter scheme described by Lamarque et al. (1999) and Khattatov et al. (2000). Only
MOPITT data south of 70N are used to ensure sufficient sensitivity of the MOPITT
retrieval to the atmospheric CO profile. We apply data assimilation outside the region
largely impacted by the wildfires. Within the region we calculate the observed minus
forecast (OMF) CO using data assimilation, but do not update the CO fields. The impacted
region is defined from 47N to 71N and 170W to 50W and covers the location of the fires as
well as the main outflow. Figure la shows the selected region overlaid on a MOPITT
composite. The composite illustrates the large amounts of CO released by the wildfires and
the widespread transport of pollution associated with them. We begin the simulations in
April 2004 to allow sufficient time for the assimilation procedure to reduce the model-

measurement bias.

2.5 Inverse Modeling

The inverse methodology relates a measurement vector y to individual CO emissions

(assembled in a state vector x) via the Jacobian matrix K and an error vector &: y =K x + €

(Rodgers, 2000). K describes the sensitivity of the measurement vector to finite changes in

the state vector and € represents the total observational error. We do not invert for the



spatial distribution of the emissions, but invert for their strength on a weekly timescale
from June until the first week in September 2004. The resulting 14 source categories (one
for each week) are included as additional species (“tagged CO”) in the full chemistry
version of the model. The inversion is iterated three times and the OH fields adjusted for
the updated fire emissions. The errors in the a priori emissions are assumed to be
uncorrelated and are set to 100% based on comparisons of emission estimates for other

fires. The observational error is assumed equal to the variance in the data assimilation

(50%).

In this methodology we assume that the OMF is a representative estimate of the adjustment
that has to be applied to the a priori emissions to match the modeled with the observed CO.
That is, we assume that contributions to CO from other sources within the selected region
are small compared to the fires (e.g. anthropogenic emissions) and/or reasonably well
known (e.g. CO produced from methane oxidation). The OMF prior to the start of the
wildfires supports this assumption. The mean OMF for May 2004 averaged over
Alaska/Canada is 4+2 ppb CO at 850 hPa, 1£1 ppb at 500 hPa, 0+1 ppb at 250 hPa.

The MOPITT levels at 850 hPa and 700 hPa are used in independent inversions because
they are most sensitive to the lowermost atmospheric CO concentrations. The MOPITT
surface retrieval level has not been used because of its large a priori contribution at high
latitudes. The averaging kernels of the inversion (Rodgers, 2000) indicate 11 independent
pieces of information were used in the inversion of the weekly fire emissions. The chi-

square of the inversion is 0.96.



3 Results

We only invert for the near-field response to the fires because the CO outside the domain is
constrained by the assimilation. To ensure this, we set the concentrations of the fire tracers
to zero outside the region of interest so that they are not transported back into the domain.
The CO fire emissions are distributed homogeneously with regard to number density
between the surface and 400 hPa to account for fire-related convection. In Figure 1b we
show the modeled CO fields for July 2004 after the third iteration to demonstrate the good
agreement with the MOPITT CO. The MOPITT data show a more pronounced spatial
structure compared to the model which is due to the coarser resolution of the model (see
figure caption) and presumably also due to varying emission injection heights that are not
reproduced in the model. Discrepancies are further explained by uncertainties in the spatial
distribution of the fire location, uncertainties in local emissions others than fires, model
transport errors, and others.

Figure 2 shows the time series for the a priori and a posteriori fire emissions. The a
posteriori estimate for the CO emitted by the fires for June-August 2004 is 30+5 Tg CO,
over twice as much as the a priori estimate. The average a posteriori error calculated from
the inversion (Rodgers, 2000) is 18%, however for individual weekly sources the error
varies between 13% and 100% (the latter for the first two weeks in June and the first week
in September). Due to the uncertainty in injection height, another inversion was performed
for comparison in which the fire emissions were emitted at the lowermost model layer, and
distributed in the boundary layer by the model boundary layer scheme. This showed no
strong impact on the derived emissions strength..

A priori and a posteriori emissions show a remarkable correlation in time except at the end

of August where the a posteriori emissions peak a few days after the a priori emissions. It



is interesting to see that as summertime advances the adjustment to the a priori emissions
increases. This might be due to peat fires which are known for releasing large amounts of
CO into the atmosphere (Christian et al., 2003). Peat fires could be gaining in intensity and
frequency when frozen surface layers are warming up, however, further investigations are
needed in order to support this hypothesis.

The OMF for June to August remaining after the third iteration is about 243 ppb CO at
850 hPa, -143 ppb at 500 hPa, and -1£2 ppb at 250 hPa. This is similar to the range of the

OMF for May 2004 (Section 2.5).

4 Evaluation

To evaluate the fire emissions, we performed reference runs with a priori and a posteriori
fire emissions, respectively, and without data assimilation, and compared these simulations
with observed CO fields. The fire emissions for NOx and hydrocarbons were increased by
the same factor as the CO emissions. A comparison of the reference runs shows that the
increase in the tropospheric column of ozone due to the increase in the fire emissions can
be as high as 25% in the vicinity of the fires and as high as 10% over Europe.

Table 1 shows the mean bias and standard deviation of MOPITT CO minus modeled CO
for the reference runs. The bias is clearly reduced when using the a posteriori emissions,
not only over the region of the wildfires but also outside the domain. The rather high bias
that remains in the case of the a posteriori emissions is due to the fact that the background
CO levels in the reference runs are too low as these runs do not use data assimilation to
adjust the transport into the impacted region. The burden of CO in the reference runs over
Canada/Alaska is 7 Tg in May 2004 and increases to 10 Tg CO when data assimilation is

applied outside the domain.



We further evaluated the model results by comparison with aircraft observations of CO
(Sachse et al., 1987) from INTEX-NA. INTEX-NA took place from end of June until
middle of August with flights over the US-West Coast, Mid-America, and New England.
Here we examine flights in the vicinity of the New England area as this is the sampled
region most affected by the fires. Each of the 8 flights examined lasted about 8 hours and
covered an altitude range from the surface up to 10 km above ground level.

We use 1-minute averages of the observations and compare them to the corresponding 3-
hour average CO concentrations from the model. The uncertainty for the aircraft data is
given as 2% or 2 ppb. The model data have been spatially interpolated to the location of the
observations. For all flights the mean bias is 8+42 ppb with the a priori emissions and 1+40
ppb with the a posteriori emissions. The correlation coefficients are 0.44 and 0.53,
respectively.

Figure 3 shows the modeled and measured CO time series for the flight on 18 July 2004
which was flown out of Pease towards the North-East over the Island of Newfoundland.
This was the flight most impacted by the wildfires with measured CO mixing ratios as high
as 600 ppb at 400 hPa. Although the model cannot replicate the measured magnitude of
this intense plume because of its coarser resolution, the timing and location of the plume
are well reproduced, and the model-measurement agreement is clearly improved using the
a posteriori emissions. Without this intense plume event the comparison for the remaining

flights is 5+33 ppb for the a priori, and 0+33 ppb for the a posteriori emissions.

S Summary and Outlook

We present an inverse modeling study to constrain the emissions of the wildfires in Alaska

and Canada in summer 2004. Our best guess of the fire emissions is 30+5 Tg CO for June-



August 2004, which is on the order of the anthropogenic CO emissions for the entire
continental US for the same time period (~25 Tg CO).

In contrast to other top-down inverse modeling studies, we apply data assimilation outside
the region of interest to minimize uncertainties in the background CO. This represents an
advantage over other approaches when considering isolated emission sources because of
minimizing the model transport error and because of constraining the contribution of CO
transported into the region of interest with high temporal and spatial resolution.

The vertical distribution of the fire emissions of CO had no significant impact on the
derived source strength in our study, but more a comprehensive analysis will be needed in

order to understand the impact of fire-related convection.
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Table 1: Mean Bias and Standard Deviation (ppb) of MOPITT minus model CO for the
region of the source optimization and a region downwind (50-70N, 50-20W). Results for
three retrieval levels are shown.

Figure 1: MOPITT (a) and MOZART (b) CO mixing ratio at 700 hPa averaged for July
2004. The box defines the region used in the optimization. Outside the box the modeled
CO fields are constrained by data assimilation, inside the box the CO fields are optimized
by inverse modeling. The MOPITT data have been averaged over a 1° by 1° grid and the
monthly mean averaging kernels have then been applied to the nearest model profile.

Figure 2: A priori and a posteriori emission estimates for June — August 2004 from the
Alaska/Canada wildfires. Solid lines indicate the mean value, dotted lines the 1-sigma
uncertainty.

Figure 3: Observed and modeled (a priori and a posteriori) CO time series for the flight on

July 18, 2004. The plume observed at 18-19 UTC has values as high as 600 ppb (for clarity
scale has been reduced).
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Table 1

Alaska/Canada Atlantic
a priori a posteriori a priori a posteriori
850 hPa 29422 18£23 25+13 14413
500 hPa 12+9 719 815 4+5
250 hPa 6t6 3%7 4+5 145
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